SM-27 MACHETE

Overview

The Machete is Stavatti’s family of next generation Close Air Support, Attack, Counter Insurgency, Lead-In Fighter, Air Defense Fighter and Advanced Pilot Trainer aircraft. A series of aircraft designed to satisfy a breadth of military aviation requirements with a modular airframe, the Machete family includes the SM-27 Turboprop Machete, the SM-28 Turbofan Machete and the SM-47 Super Machete. The Machete series is now under development to satisfy tomorrow’s military trainer, attack and air defense needs.

The SM-27 is a next generation single engine Close Air Support, Maneuver Air Support, Anti-Armor, Precision All-Weather Attack and Advanced Trainer aircraft. Powered by a 4,000 SHP PW150 turboprop, the SM-27 is a three surface aircraft featuring a moderate aspect ratio wing, canard foreplanes, twin vertical stabilizers and an all moving horizontal tail. With a maximum level speed of 400 Knots, the SM-27 is armed with a 30mm cannon and can carry up to 8,500 lbs of ordnance over 2,000 nm. Featuring an F-16 style, all-glass cockpit that incorporates F-16 flight control grips and reclined Martin Baker Mk16 or MK18 ejection seats, the turboprop Machete will be produced in single seat attack (SM-27S) and two seat tandem attack/trainer (SM-27T) configurations. With in-flight refueling capability, integrated avionics and 9-g plus maneuverability in the clean-configuration, the turboprop Machete will be available in basic strike configurations without radar, as well as fully-equipped variants with Vixen 500E AESA or RACR AESA radar and a comprehensive EW/Self Protection Suite.

A modern “A-1 Skyraider,” the SM-27 is designed to serve as a successor to attack aircraft including the A-10 Warthog, Su-25 Frogfooot, A-7 Corsair II, A-29 Super Tucano ALX, OV-10 Bronco, A-37 Dragonfly, IA-58 Pucara and other attack aircraft. Now under development the SM-27S/T will be qualified at the AFFTC at Edwards, AFB. The SM-27S/T will be certified to applicable FAA type and production certification standards (FAR 25, etc.) as a fully qualified Day/Night VFR and IFR (VMC/IMC) aircraft.

Accommodation

The SM-27S/T cockpit is designed to accommodate a wide spectrum of male and female crewmembers accommodating JPATS Cases 1 through 8 encompassing the 1st percentile female through the 99th percentile male (NATO) population range. This population range corresponds to crewmembers ranging from 4 ft 10 in/100 lbs through 6 ft 5 in/280 lbs. For planning and engineering development purposes, assumed standard crew-member weight is 260 lbs, including survival equipment.

The SM-27S flight crew consists of a single pilot seated on a Martin Baker MKUS.16L or MK18 zero/zero ejection seat. The SM-27T flight crew consists of a pilot and Weapon Systems Officer (WSO)/Observer seated in tandem (fore and aft crewstations respectively) on Martin Baker MKUS.16L zero/zero ejection seats in satisfaction of the COIN/CAS/FAC role. In satisfaction of the Advanced Trainer role, the SM-27T flight crew consists of a student and instructor seated in tandem (fore and aft crewstations respectively) in on Martin Baker MKUS.16L or MK18 zero/zero ejection seats. Total standard SM-27T crewmember weight, including survival equipment, is 520 lbs.

Powerplant

The SM-27S/T cockpit is designed to accommodate a wide spectrum of male and female crewmembers accommodating JPATS Cases 1 through 8 encompassing the 1st percentile female through the 99th percentile male (NATO) population range. This population range corresponds to crewmembers ranging from 4 ft 10 in/100 lbs through 6 ft 5 in/280 lbs. For planning and engineering development purposes, assumed standard crew-member weight is 260 lbs, including survival equipment.

The SM-27S flight crew consists of a single pilot seated on a Martin Baker MKUS.16L or MK18 zero/zero ejection seat. The SM-27T flight crew consists of a pilot and Weapon Systems Officer (WSO)/Observer seated in tandem (fore and aft crewstations respectively) on Martin Baker MKUS.16L zero/zero ejection seats in satisfaction of the COIN/CAS/FAC role. In satisfaction of the Advanced Trainer role, the SM-27T flight crew consists of a student and instructor seated in tandem (fore and aft crewstations respectively) in on Martin Baker MKUS.16L or MK18 zero/zero ejection seats. Total standard SM-27T crewmember weight, including survival equipment, is 520 lbs.

The combustor for the turbomachine portion is of annular reverse flow type. The reduction gearbox is a twin layshaft design with an offset propeller shaft. Equipped with a dual channel Full Authority Digital Engine Control (FADEC) for ease of operation and reduced workload, the engine features a health monitoring system and an integrated propeller electronic control. First used in the Bombardier DHC-8-400 regional airliner the first production standard engine was delivered in May of 1997. Basic engine TBO is 10,000 hours with a fleet-leader TBO of 12,000 hours.

The PW150 for the SM-27 drives two contra-rotating, 120 in diameter reversible-pitch, constant speed propfan blades of Scimitar form. The forward propeller features 8 blades while the aft propeller is of 6 blade design to ensure harmonic balancing of the engine system. Totaling fourtenn pusher blades, each blade is fitted with EESS for deicing. Self-start capability and electric power control with mechanical back-up is provided. PW150 mass flow is provided via two semi-flush mounted, bifurcated fuselage air inlets equipped with EESS deicing.

The PW150 is orientated in a pusher configuration, mounted to the aircraft via Titanium engine mounts with the engine bay segregated from the fuselage by a Titanium firewall. The engine itself is enclosed in a clamshell cowling of foam metal sandwich construction. Engine bay fire suppression is provided by an integrated Kiddie detection and suppression system. To provide the aircraft with electrical power and bleed-air while on the ground, the engine is equipped with a propeller brake to enable Hotel Mode. The propeller brake is installed in the reduction gearbox and allows the engine’s LP/HP spools to run providing electrical power and bleed air with the propeller locked. The Hotel Mode supplies power and bleed air without the additional weight and cost of an APU.

Armament

SM-27S/T armament includes fixed internal and expendable, external carried weapons.

SM-27S/T fixed internal armament includes one 30mm cannon mounted within a streamlined ventral fuselage fairing. The 30mm cannon is mounted directly to the aircraft fuselage on a vibration dampening mount as an integrated fixed weapon system. The 30mm cannon fairing is a permanent structural fixture engineered specifically for housing, supporting and stabilizing the 30mm cannon. 30mm cannon ammunition is fed through a link-less feed system supplied by, and contained within, an aft fuselage located armored ammunition drum. Ammunition is loaded/serviced through a ventral fuselage loading hatch. The cannon provides the aircraft with anti-armor/anti-aircraft capability.

The standard SM-27S/T cannon is the General Dynamics GAU-13/A 30mm derived from the GAU-8/A. The GAU-13/A is a four barrel, electrically driven cannon with a variable rate of fire of up to 3,000 rds/min. The GAU-13/A employs standard 30mm PGU-13 (HEI) and PGU-14 (API) ammunition with a muzzle velocity of 3,600 ft/sec. The SM-27 may also be fitted with the GAU-8/A or lightweight derivative thereof, resulting in three additional gun barrels and an increased rate-of-fire of up to 4,000 rds/min, but with a weight penalty of 281 lbs. In the SM-27S, the cannon may be provided with over 1,000

rounds of additional ammunition contained within an expanded ammunition drum located aft of the forward cockpit. In the SM-27T, a rectangular ammunition magazine located directly behind the aft crew station provides a total of 600 rds. Over 8,000 lbs of expendable, external stores and ordnance are carried on a total of eight external, wing-mounted hardpoints equipped with NATO standard 14-inch and 28-inch lug suspension systems. Of the six hardpoints, two are rated to 1,000 lbs, two are rated to 2,000 lbs and four are rated to 2,500 lbs maximum external carriage capacity at a +7.5-g load factor. Four of the external wing hardpoints are plumbed for external fuel tanks, including the Cobham-Sargent Fletcher #401315 150 USG tank as shared by the T-50.

The Machete is designed primarily for air-to-ground missions, employing ordnance such as the AGM-65, GBU-39/B, GBU-31, GBU-32, GBU-38, CBU-97, CBU-59, BLU-107 and additional stores. Optimized for precision strike, the SM-27S/T employs GPS guided munitions, including the GBU-39/B Small Diameter Bomb (SBD) to dispatch ground threats with minimal collateral damage. The SM-27S/T can carry up to 24 GBU-39/Bs, or 8 AGM-65s or 2 GBU-31 JDAMS externally in addition to 2 AIM-9s.

Air-to-Air capability is provided through the carriage of AIM-9 and similar passive homing/IR AAMs. The Machete is capable of LANTIRN, LITENING and ECM pod carriage and employs a MIL-STD-1760 Weapon Interface Data Bus. Weapons release is conducted through a control column gun trigger switch and weapon release button for air-to-air/air-to-ground. An abridged SM-27S/T stores loading chart is provided:

Avionics & Sensors

The SM-27 has an Open System Architecture (OSA) with avionics and sensors integrated about a MIL-STD-1553B Interface/Data Bus. Featuring a comprehensive avionics and sensors suite, the philosophy driving the SM-27 avionics configuration focuses upon capability, reliability, flexibility and ease of serviceability. Incorporating both avionics designed or modified to meet specific Machete needs as well as proven Military or Commercial Off-The-Shelf systems (MOTS/COTS), the SM-27 offers maximum flexibility to meet specific customer vehicle purpose and mission needs.

Standard core SM-27 avionics include the Power-By-Wire (PBW) Flight Control System, Air Data Computer, Flight Management System, Avionics Management System, Automatic Flight Direction System, Instrument Landing System, Secure Data Link, Voice/Data Recorder and emergency power supply.

Building upon the core avionics, to address specific customer needs the SM-27 will be offered with a variety of avionics configurations including an Option I, an Option II and an Option III configuration. In the Option I configuration, aircraft avionics and sensors are optimized to provide the most cost effective CAS solution while providing many of the same basic capabilities as F/A-18, F-16, A-10, F-35, A-29, AT-6, A-37, A-4 and A-1 aircraft. In the Option II and III configurations, the SM-27 features AESA radar, comprehensive IFF and other systems for enhanced mission performance. A Sensor & Avionics summary table for SM-27 Machete Option I, II and III configurations is provided:

AVIONICS SYSTEM OPTION I OPTION II OPTION III
SENSORS
Multi-Mode Radar None Vixen 500E AESA RACR AESA
IRST None None IRST21
COMMUNICATION
VHF/UHF COMM AN/ARC-210(V) Gen 5 AN/ARC-210(V) Gen 5 AN/ARC-210(V) Gen 5
IFF Transponder AN/APX-123A(V) AN/APX-125(V) AN/APX-126
Digital Data Link (Link 16) AN/URC-138 TACR-16DL TACR-16DL
Digital Anti-Jam Receiver DAR GPS Digital DAR GPS Digital DAR GPS Digital
Intercom System Control A301-412 A301-412 A301-412
NAVIGATION
Radar Altimeter LPIA-194 LPIA-194 LPIA-194
INS/GPS FALCN FALCN FALCN
TACAN AN/ARN-153(V) AN/ARN-153(V) AN/ARN-153(V)
ILS/GS/MB AN/ARN-147V AN/ARN-147V AN/ARN-147V
MISSION MANAGEMENT
Mission Computer MMCU MMCU MMCU
Avionics Management System CMA-2082M CMA-2082M CMA-2082M
Stores Management System SM27 ASMS SM27 ASMS SM27 ASMS
FLIGHT CONTROL
Flight Control System 4 Channel PBW 4 Channel PBW 4 Channel PBW
Automatic Flight Direction System Digital Autopilot Digital Autopilot Digital Autopilot
DISPLAYS
Head Up Display (HUD) NightHawk or LiteHUD Canopy Embedded Display Canopy Embedded Display
Helmet Mounted Display (HDMS) Gen III HMDS or JHMCS Gen III HMDS or JHMCS Gen III HMDS
Display Processor FV4000 MMDP SM27 MMDP SM27 MMDP
Forward Primary Display LAAD 20 x 8 in AD189 20 x 9.5 in AD189 20 x 9.5 in
Forward Center Display 104P 6 x 8 in AD44 6 x 7.5 in AD44 6 x 7.5 in
Forward Secondary Displays 104P 6 x 8 in AD40 6 x 7 in AD40 6 x 7 in
Aft Primary Display LAAD 20 x 8 in AD329 20.5 x 16.5 in AD329 20.5 x 16.5 in
Aft Center Display 104P 6 x 8 in AD43 6 x 7.3 in AD43 6 x 7.3 in
Aft Secondary Upper Displays 104P 6 x 8 in AD32 6.75 x 5 in AD32 6.75 x 5 in
Aft Secondary Lower Displays 104P 6 x 8 in AD46 6.75 x 6.8 in AD46 6.75 x 6.8 in
MISSION RECORDING
Cockpit Voice/Data Recorder FA2100 FA2100 FA2100
EMERGENCY POWER
Emergency Power Supply PS-855/B PS-855/B PS-855/B

Avionics listed in the above summary are identified by system designation or description rather than manufacturer. Many of the avionic systems identified in the above table have been produced under contract by a variety of different manufacturers over the course of their production life, hence avionics are cited by designation rather than specific producer. Avionics configurations significantly impact the flyaway cost of individual aircraft. The typical flyaway cost of an SM-27S equipped with Basic sensors and avionics is approximately $16 Million. A SM-27S with RACR AESA radar and a comprehensive electronic countermeasures suite may have a flyaway cost of $26 Million or more. End-users are encouraged to discuss CAS mission needs with Stavatti to arrive at their optimal Machete configuration.

Stavatti is spearheading the design and development of next generation avionics and sensors to equip the Machete family as well as other future Stavatti military aircraft. Optimized for Machete mission requirements, these new avionic systems will be tested, certified, qualified and introduced into Stavatti airframes over various aircraft production blocks as the systems enter production. One of the first avionic product lines introduced by Stavatti is a proprietary line of cockpit display systems including the Canopy Embedded Display (CED) and Advanced Multi-functional Liquid Crystal Displays (ADs) which offer a significant increase in the available surface area of tactical displays over alternative displays. Additional information regarding these new display systems is provided within the cockpit summary.

For expanded mission capability, the Machete may be equipped with Electro-Optical Sensors including both fixed sensors as well as externally mounted sensor pods. Electro-Optical targeting systems, including the Lockheed Martin Electro-Optical Targeting System (EOTS) as developed for the F/A-35, providing both forward-looking infrared (FLIR) and infrared search and track (IRST) functionality may be incorporated directly into the aircraft nose section. The IRST21 infrared search and track may also be integrated. Spherical externally mounted gimbaled EO/IR sensor systems, including the MX-10D and/or MX-15D, may be mounted on the SM-27. The SM-27 may be fitted with a retractable ventral MX-10D sensor in the nose of the aircraft immediately ahead of the nose gear. This MX-10D will extend vertically for surveillance and retract while the aircraft 30mm cannon is operational. Up to two additional MX-15Ds or EOTS/Sniper derivative EO/IR sensors may be mounted on the leading edge of the empennage booms, allowing the aircraft to have one to three gimballed EO/IR sensors for a broad array of sensing capability. A summary table of possible EO sensor systems is provided:

EO SENSOR SYSTEM BASIC FIRST OPTION SECOND OPTION
Airframe Integrated Sensors None AN/AAS-52 MSTS EOTS
Externally Mounted Pod None SNIPER LITENING II

To realize pilotless and/or autonomous flight capability, the SM-27 OSA will incorporate open source avionic systems developed specifically for the Machete family of aircraft that allow the aircraft to be readily converted for unpiloted operations. The Machete series of aircraft may be operated as piloted, remotely piloted or unpiloted autonomous air vehicles with the avionic systems necessary for autonomous flight, including hardware and software, being embedded in the foundation of the aircraft’s Automatic Flight Control System. When operating as a piloted aircraft, this pilotless system will augment piloted flight operations by serving as a manually selected “Safety Pilot” to assist in maintaining positive aircraft control in the event of pilot incapacitation or failure of the pilot to recover the aircraft during a departure scenario.

The cockpit is equipped with a Cockpit Video Recording (CVR) system capable for recording at least 120 minutes of HUD symbology, the external HUD field of view, cockpit LCD MFD symbology and all aircraft communication system audio. The aircraft is also equipped with a crash survivable Flight Data Recorder (FDR) capable of storing the last 90 minutes of flight data for post-crash flight reconstruction. The aircraft is fitted with a Crash Position Indicator (CPI) and a survivable Underwater Locator Beacon (ULB). To reduce electrical system complexity, Data Bus wiring used throughout the system architecture. A SpectrumFX fire suppression system utilizing Firebane® will be used as a non-Halon 1301 avionic system fire suppressant within sealed avionic bays. Firebane® is the SM-27’s Halon 1301 Replacement.

Electronic Warfare

The Electronic Warfare (EW) Suite of the SM-27 is designed to protect the aircraft from surface-to-air and air-to-air missiles in the high threat environment. Providing defense against both radar guided and infra-red guided missile threats, including MANPADS, the SM-27 employs both internal and external countermeasures Electronic Counter Measures (ECM). The SM-27S/T EW system includes a wide variety of customer selected Radar Warning Receivers, Laser Warning Systems, Self Protection Jammers, Advanced Missile Warning Sensors and Countermeasures Dispensers. To further improve survivability the aircraft may be equipped with external jamming pods as well as towed decoy dispensers.

Like avionics and sensors, the EW suite for the SM-27 is selected by the end user who determines what systems and what decree of protection will be incorporated into the SM-27. Due to the relatively large size of the SM-27, a variety of complex ECM systems may be carried by the aircraft and integrated into its Open System Architecture. As the cost associated with SM-27 EW systems varies, end users must ultimately determine what degree of EW is appropriate for them.

The standard SM-27 EW suite begins with 14 AN/ALE-47 or AN/ALE-52 Chaff/Flare dispensers including three dispensers on each wing-tip and four dispensers mounted ventrally on each of the aircraft’s empennage support booms. These dispensers are controlled using a flight grip toggle switch that is keyed into a MFD display menu. Additional Chaff/Flare dispensers may be incorporated into the aircraft’s support booms and fuselage as desired. In addition to the AN/ALE-47, all SM-27s may carry one or more AN/ALE-50 or AN/ALE-70 towed decoys, mounted at either the end of the empennage booms or at the back end of external stores plyons. Looking beyond the countermeasure and decoy dispensers, the EW suit of the SM-27 varies by individual configuration as elected by customer. Integrated ECM suites may range from the Elisra SPECTROLITE SPS-65V-5 or ALL-in-SMALL to the Harris AN/ALQ-211A(V)4 with AN/ALQ 214(V)4/5. A table summarizing SM-27 EW Systems for four Optional configurations is provided:

ELECTRONIC WARFARE SYSTEM BASIC DELUXE OPTION I DELUXE OPTION II
Radar Warning Receiver RWR-TBD AN/ALR-93(V) AN/ALR-56M
Missile Approach Warning System None-TBD AN/AAR-58 AN/AAR-54(V)
Laser Warning System LWS-TBD LWS-20V-2 LWS-TBD
Airborne Self Protection Jammer None AN/ALQ-165 AN/ALQ-TBD
Decoy Set AN/ALE-50 AN/ALE-50 AN/ALE-50
Countermeasures Dispensing Set AN/ALE-47 AN/ALE-47 AN/ALE-47

Reviewing the above table it is evident that the SM-27 may feature a wide variety of ECM systems. To ensure aircraft survivability in a high threat environment while maintaining affordability, Stavatti is working with industry team members to develop and field a proprietary, affordable, austere integrated ECM system with RWR for warning and EW control that can be included in the most basic Machete configurations. Stavatti is also investigating the in-house development and production of affordable LWR, MAW as well as a novel Generated Intense Magnetic Pulse Airborne Self-Protection Jammer that may be offered on the basic Machete models while maintaining a flyaway cost of $20 Million for single seat variants. Advanced Self-Sacrificing Drone (SSD) systems for active missile and airborne lethal mechanism intercept are also under development by Stavatti.

The SM-27 may also feature a very comprehensive EW suite that draws directly from the expertise of established contractors. Offering many of the same EW systems found in either the F/A-18E or the F-16C, the SM-27 is one of few aircraft in its class that has sufficient internal volume to carry complex Airborne Self-Protection Jammers including the AN/ALQ-214(V)4/5. Employing proven, MOTS and COTS, the SM-27 EW solutions will deliver known levels of survivability with no threat being a surprise. Providing F/A-18E level capability in a CAS aircraft, the SM-27 will be suitable for all-weather, day and night operations in adverse high threat theaters.

Cockpit

The cockpit is available in two configurations: the single seat SM-27S and the two seat tandem SM-27T. Each configuration is designed for reduced workload operations with crewmembers seated on reclined Martin Baker MKUS.16L or MK18 zero-zero ejection seats. Both Machete models incorporate auto-eject and auto-eject sequencing. The cockpit is pressurized to 8,000 ft and is heated/air-conditioned to enable heating/cooling the aircraft cockpit and avionics bays within outside operational temperature limit range of -55°C to 55°C with solar gain. Crew oxygen is provided by a Cobham OC1132 Molecular Sieve Oxygen Generating System (MSOGS).

The cockpit for SM-27 is a modular unit, produced as a unitized, self contained system external to the fuselage that interfaces with the aircraft through long-life electronic and mechanical connectors. Known as Armored Cockpit Modules (ACMs), the cockpits are interchangeable between aircraft models, allowing individual aircraft to be converted to single seat (SM-27S) or two place (SM-27T) variants as desired. Incorporating distinct, armored and EM hardened quick interconnects for flight controls, electrical junctions, avionics buses and environmental control, the Machete cockpit is installed and extracted vertically in the absence of the bubble canopy. The ACMs attach to the fuselage structure through bolts with vibration damping fittings.

The ACM is a titanium foam metal sandwich structure consisting of a titanium foam sandwiched between titanium armor plates. A laser welded structure designed to provide a level of cockpit protection equal or greater than that of the A-10’s titanium “bath tub,” the ACM features a Spectra® fiber composite interior liner to significantly mitigates the penetrative effects of projectiles and spall. The ACM for the single seat SM-27S weighs approximately 533 lbs while the aft ACM for the two seat SM-27T has a unit weight of 459 lbs for a total combined SM-27T ACM weight of 992 lbs. The cockpit interiors are furnished with aluminum foam metal sandwich consoles, an instrument panel and a panel hood. The panel hood is removable for immediate access to instrument panel avionics and displays while consoles are removable for ease of control panel replacement, update and exchange.

The aircraft bubble canopy is of large area, frame-less, single-piece clamshell type. The canopy is of advanced bullet resistant polycarbonate composition and can safely sustain the impact of a 4 lb bird at airspeeds exceeding 450 kts from any attitude. Visibility is 350° with 13° over-the-nose and 25° over-the-side. The canopy is lifted upward for cockpit access by an electrohydrostatic actuator. The canopy is defrosted and purged of precipitation using a perimeter high pressure, hot air system tied into the cabin heating and air conditioning system. An internally mounted, manual unlatch and hand-crank is provided.

All Machete variants benefit from a HOTAS flight controls arrangement consisting of a right hand/starboard mounted Flight Control Grip (F-16 derivative) right console mounted flight control column, full deflection rudder pedals, power control lever (F-16 Grip Derivative). Flight and throttle grips are provided by Esterline (Mason Electric) and are based upon current production articles for the F-16 Block 50+ to reduce tooling complexity. HOTAS provides toggles for aircraft flaps, speedbrake, propeller pitch, trim, sensors, weapons release, microphone, etc. Rudder pedals are fully adjustable. Dual flight controls are provided in two-seat variants. All flight controls, displays, instruments, system controls and circuit breakers are accessible from forward and aft crewstations by crew members with crew seat restraints fastened.

SM-27 cockpits may feature either new design Stavatti display systems or off-the-shelf display systems. New design Stavatti display systems include a Canopy Embedded Display and Stavatti touch screen Active Displays (AD). The Canopy Embedded Display (CED) is a new Head Up Display (HUD) technology that replaces conventional aircraft HUDs as well as Helmet Mounted Displays (HMDs). The Stavatti CED benefits from pioneering consumer electronics research in the field of transparent, curved LED displays, including Organic Light Emitting Diodes (OLEDs).

Applying this technology to aircraft canopies under license from a specific industry partner, the inside of the canopy is layered with a transparent thin film LED which serves as the aircraft’s HUD. Providing active visual situational awareness, the CED allows much of the aircraft’s canopy surface to serve as a large, wrap-around, transparent display suitable for displaying both menus and traditional HUD symbology as generated by the aircraft’s multi-functional display processors. In addition to projecting HUD symbology, the CED provides visual cuing locations for radar/sensor targets that are yet visually out-of range while providing both situational awareness and heading cuing for navigational purposes. Also enabling the dimming or blacking-out of the canopy in whole or in part, the CED mitigates solar glare effects, reduces cabin temperature and can provide microsecond dimming to protect pilot vision during nuclear blasts. Serving as a primary visual flight reference display, the CED will deliver greater situational awareness than either traditional HUDs or HMDS at a significantly lower cost. The SM-27 will be equipped with the CED as standard equipment within 36 months of prototype first flight.

Stavatti touch screen Active Displays (AD) are next generation lightweight LED Multi-Functional Displays of unique trapezoidal configuration. A ruggedized display system engineered to MIL SPEC for operation in extreme environments and under high accelerations, this display technology allows for the production of non-rectangular, large format, cost competitive displays for both military and civil aircraft. Enabling next generation, all glass cockpits, Stavatti’s Active Displays will be produced by a leading military and consumer electronics industry team member for exclusive use in future Stavatti cockpits. Coinciding with the introduction of the CED, SM-27 cockpits will feature these Active Displays as standard equipment within 36 months of prototype first flight. Serving as an off-the-shelf alternative to new Stavatti cockpit display technologies, the SM-27 may be equipped with a Esterline Night Hawk wide field-of-view HUD and HUD repeater system as the primary visual flight reference display system.

Alternatively, a VSI Integrated HMDS may be used as an alternative to the HUD for the forward crew station. Aircraft equipped with the Night Hawk HUD will employ five L3 Communications Actiview 104P 6 x 8 in LCDs in the forward crew station as secondary flight reference instruments. Aircraft featuring the HMDS will offer two Actiview 104P 6 x 8 displays and one L3 LAAD 20 x 8 display. The aft crewstation of the SM-27T will feature one L3 LAAD 20 x 8 as a primary MFD and three Actiview 104P 6 x 8 displays as secondary displays.

All SM-27 cockpits will be IFR certified and designed for Generation III night vision compliance and Helmet Mounted Cuing Systems/Integrated Helmet and Display Sighting Systems (HMCS/IHDSS). Forward and rear panels are complemented by a comprehensive warning annunciation system, integrated air conditioning/heater vents and standby control interfaces.

Layout drawings of the SM-27S/T forward and aft crewstations featuring Stavatti display solutions are provided. Layout drawings of cockpits featuring off-the-shelf Night Hawk HUD and L3 Display Systems are available upon request.

Structure & Materials

The SM-27 will be an all-metal aircraft featuring semi-monocoque foam metal sandwich construction. Benefiting from a variety of advanced alloys as well as metal forming and joining techniques, the Machete is re-inventing how airplanes are built. As a semi-monocoque aircraft, the SM-27 has external foam metal sandwich skins that are supported by an internal structure of frames, bulkheads, longerons, spars and ribs made from high performance titanium and aluminum lithium alloys. Employing a minimal number of rivets or screw fasteners, the SM-27 is built from sandwich skins that are welded to titanium bulkheads, frames, spars and ribs using Laser or Friction Stir Welding (FSW) techniques.

Conceptually similar to aluminum honeycomb sandwich, the foam metal sandwich approach substitutes aluminum honeycomb with a low density metal foam in which a foam metal core is sandwiched between two metal sheets. The foamed metal core will be either titanium foam or aluminum-lithium foam, with face sheets being either aluminum-lithium or titanium. The foam itself will be of either open and closed cell type, depending upon component purpose and application. Offering significant improvements over traditional semi-monocoque stressed skin aircraft construction, the foam metal sandwich approach builds upon the known advantages of Honeycomb Sandwich structures by adding a high degree of omni-directional strength as well as substantial tolerance to ballistic impacts. Recalling the weight saving and cost reducing benefits of full depth Honeycomb sandwich construction cited by F.A. Figge and L. Bernhardt, the Machete’s use of foam metal structures results in aircraft structures that are inherently stronger, stiffer, lighter and more affordable to produce.

The closed cell metal foam sandwich structure has an excellent stiffness-to-weight ratio, a greater strength-to-weight ratio than traditional structures and lower thermal conductivity with a high degree of fire resistance. The sandwich construction results in a structure that offers high degree of sound and vibration dampening as well as high impact resistance, fatigue cycle tolerance and superior survivability. Moreover, the closed cell foam structure is conducive to a smooth, low-drag skin-surface that can be produced quickly at a low cost and lower parts count. A new material manufactured by proven and qualified by companies including Fraunhaufer IWU of Chemnitz, Germany, today there are many qualified manufacturers that are producing foam metal sandwich structures for aerospace, defense, automotive, and other applications. Stavatti will be building upon these successes to standardize and qualify a proprietary approach toward the production of foam metal sandwich structures for FAA certified and DoD qualified aircraft.

The foam metal sandwich approach will feature skins which are 0.032 to 0.25 in thick separated by a low density foamed metal core measuring as thin as 0.5 to 1.0 in to thicknesses over 9 in for full depth wing structures. The foamed metal core is metallurgically bonded to the metal face sheets on a molecular level. This metallurgical bonding is the result of the in-situ bonded proprietary manufacturing approach whereby the core is foamed between solid face sheets, allowing the foam to fuse and form a molecular bond. The face sheets will use 100% density material while the lower density foam core will have a range of material density from 3% to 10% with an average density of 8%, depending on airframe structural component.

This foam metal sandwich technology has been utilized by the aerospace industry for over two decades in a variety of applications. Stavatti perceives this technology as a break-through that not only increases aircraft structural integrity but allows significant reductions in airframe fabrication time and cost. Significantly reducing the cost of titanium components this technology will enable the production of all metal aircraft which significantly eclipse any benefit from the use of fiber composites or other materials. Having briefed both the Air Force Research Laboratories (AFRL) and NAVAIR on the foam metal sandwich technology in 2014, Stavatti will qualify both aluminum-lithium and titanium foam metal sandwich structures for military and civil aircraft applications through these organizations as part of the comprehensive SM-27 military qualification process.

To reduce initial development costs, SM-27 demonstrator aircraft may feature aluminum and titanium honeycomb sandwich structures as an off-the-shelf substitute for foam metal sandwich skins. These honeycomb sandwich skins would be produced by an industry team member such as Hexcel and fastened by welding or mechanical fasteners to airframe bulkheads, frames, longerons, spars and ribs. These alloy sandwich panels could be used as direct substitutes to foam metal sandwich panels with characteristics that have been well demonstrated in Jones [4] and [5]. While production aircraft will feature foam metal cores, use of honeycomb cores in prototype aircraft will expedite the development program. Due to their omni-directional strength, superior impact resistance, survivability and their possible use as pressurized fuel tanks, however, foam metal structures are the desired core material for the SM-27.

To form foam metal and honeycomb sandwich structures, as well as aircraft sheetmetal into precision contoured fuselage, wing, canard and tail skins, Stavatti will use a combination of aircraft metal forming techniques including laserforming, hydroforming, stretchforming and explosive hydroforming. Specific forming techniques are selected based upon part production quality, production run volume and overall cost. Titanium components are produced using laser forming, laser machining and traditional aerospace titanium part production methodologies. Sandwich structures are either provided to Stavatti as pre-formed components by industry team members or formed in-house. Specific components may be formed prior to creation of sandwich structure wherein motel metal is foamed and cooled to result in a molecularly bonded, foam metal sandwich part. Low radius of curvature parts, including wing and tail skins will likely be stretch formed or stretch formed using laser assistance and then welded to a laser formed foam sandwich. Thick wing and tail structures may be machined from sheet stock to a desired thickness and machined configuration. Aircraft landing gear may also benefit from titanium foam metal construction to reduce component weight. While specific airframe hardware and components may consist of machined aluminum-lithium, titanium and stainless steel, most of the external aircraft surface area will consist of aluminum-lithium and titanium foam metal sandwich structure.

Beneath the sandwich skins is a spaceframe substructure. Fuselage skins are supported by frames and bulkheads tied together by longerons while lifting structures feature a substructure of spars and ribs. Fuselage longerons are foam metal sandwich structures of formed thin wall rectangular section titanium or aluminum-lithium tubes with aluminum foam cores. Fuselage Bulkheads and frames are machined or built-up laser welded titanium or aluminum lithium structures that are connected as a structural space-frame by the longerons. Spars are of sine-wave design featuring an I-beam section where horizontal caps are supported by a sine-wave web. Wing, tail and canard ribs are of machined or built up laser welded titanium or aluminum-lithium design with eight wing ribs featuring reinforced trunnion ports for securing of external pylon attachment fittings. Structures and components are fastened throughout the aircraft structure through laser welding, Friction Stir Welding, aerospace machine screws, titanium bolts and Huck Ti-Matic rivets as appropriate.

SPIN-OFFS

Declassified/reduced classification level aspects of non-commercial projects undertaken by Stavatti Advanced Development result in a knowledge base suitable for direct application in non-classified/reduced classified level programs. Consequently, Advanced Development has the capability to produce products for general service with the US DoD that employ reduced security level spin-off technologies. Additionally, when an Advanced Development platform is retired from special access/carve-out service, a derivative of the platform may be developed for allied Direct Commercial Sale (DCS). These products are considered Advanced Development spin-offs.

Advanced Development spin-offs are export restricted, specialty products that are designed by Advanced Development and funded in-whole or in part by government user agency or private sector funds. Such products incorporate numerous systems and capabilities which may be classified/export restricted, yet the overall configuration is available for public dissemination and general marketing to the US domestic military establishment. Spin-off products may be produced at an Advanced Development facility, or an alternate facility owned and operated by Stavatti. These products may be sold and supported directly by Advanced Development, or by an alternate, appropriate division of Stavatti.

IR&D INITIATIVES

The focus of private-sector sponsored Advanced Development IR&D and limited production efforts undertaken as commercial initiatives rests with a variety of topics. Principal areas of ongoing investigation and development as undertaken by Advanced Development include:

A) Formulation of a Stavatti proprietary Scandium-Aluminum alloy containing 0.05% to 0.25% Scandium, 7.5% to 9.0% Zinc, 1.5% to 2.3% Magnesium, 1.5 % to 2.1% Copper, 0.02% to 0.05% Chromium, 0.05% to 0.15% Zirconium and 87% to 91% Aluminum with projected yield strengths of 85 ksi to 110 ksi, 12% to 19% elongations and 7% to 10% reduction areas while offering improved weldability and corrosion resistance. This Scandium-Aluminum alloy will be developed for direct application as a MIL-qualified and FAA certified/approved material for use in production Stavatti aerospace vehicles.

B) Formulation and qualification/certification of a proprietary advanced, high temperature, environmentally friendly/non-carcinogenic (hence non-MDA containing) polyimide resin for prepreg/autoclave curing with a TTR in excess of 900º F to serve as a successor to RP46, AFR-700B and PMR-15.

C) Design, development, qualification and production of next generation photonic processors/transistors, photonic computers and photonic data storage mechanisms.

D) Design, development, qualification and production of ground-breaking/novel, next generation variable-cycle, air-breathing aircraft propulsion system for continuous operation in the MACH 5 to MACH 15 regime.

E) Design, development, qualification and production of Quiet Super Sonic (QSS) aircraft.

F) Design, development, qualification and production of ground-breaking/novel variable camber/mission adaptive/aeroelastically tailored wing of dynamic, mutable type.

G) Design, development, qualification and production of an Advanced Air Mobility Platform for the rapid, undetected infiltration/exfiltration of Special Operations Forces (SOF) deep into hostile and heavily defended airspace.

H) Design, development, qualification and production of a high energy, aircraft driven, regenerative gas-dynamic laser weapon system for use as the primary armament of tactical fighter aircraft as a successor to traditional 20mm, 25mm, 27mm and 30mm projectile aircraft cannons.

I) Qualification and production of a derivative Near Space Reconnaissance (NSR) platform for Direct Commercial Sale to US and NATO air defense forces.

Performance & Specifications

MODEL
SM-27S

TYPE
Single Seat Close Air Support (CAS), Maneuver Air Support (MAS) and COunter-INsurgency (COIN) Aircraft

ACCOMMODATION
Single Pilot Seated on a Martin Baker MKUS. 16L or MK18 Zero-Zero Ejection Seat

POWERPLANT
One (1) Pratt & Whitney Canada PW150 Derivative Turboprop derated to a maximum rating of 4,000 s/hp driving a 10ft diameter, Contra-Rotating 8/6 Blade Scimitar Propeller.

STRUCTURE
Cantilever three spar semi-monocoque titanium foam metal sandwich wing, canard and empennage with modular four element semi-monocoque titanium and aluminum foam metal sandwich fuselage.

ARMAMENT
One Ventral Centerline Mounted General Dynamics Four Barrel GAU-13/A 30mm Gatling Cannon with 1,000 rds; Eight Underwing Stores Pylons with 14-in Suspension for a Maximum External Warload of 8,000 lbs.

SM-27 MACHETE
DIMENSIONS WEIGHTS & CAPACITIES
Wingspan 53 ft 0 in Empty Weight 15,000 lbs
Length Overall 38 ft 6 in Maximum Internal Fuel (IF) 5,000 lbs
Height Overall 12 ft 11 in Max External Load/Warload 8,000 lbs
Wing Area 354 sq ft Max Useful Load 15,000 lbs
Wheelbase 16 ft 2 in Typical Combat Weight (TCW) 25,300 lbs
Wheeltrack 12 ft 1 in Max Take-Off Weight (MTOW) 30,000 lbs
PERFORMANCE
Max Level Speed @ SL 350 KTAS
Length Overall 38 ft 6 in
Max Level Speed @ FL150 407 KTAS
Max Cruise Speed @ FL150 366 KTAS
Max Cruise Speed @ FL300 339 KTAS
Typical Cruise Speed @ FL150 329 KTAS
Typical Cruise Speed @ FL250 307 KTAS
Typical Landing Stall Speed @ SL 166 KTAS
Typical Approach Speed @ SL 76 KTAS
Typical Approach Speed @ SL 84 KTAS
Typical Takeoff Speed @ SL 114 KTAS
Max Climb Rate @ SL 4,275 ft/min
Service Ceiling 45,000 ft
Max Cruise Range @ FL150-IF 2,089 nm
Max Cruise Range @ FL300-IF 2,534 nm
Typical Combat Radius @ FL150-IF 783 nm
Typical Combat Radius @ FL250-IF 870 nm
Ferry Range-External Tanks 3,803 nm
Endurance @ SL-Internal Fuel >13 Hrs
Takeoff over 50 ft, Takeoff Weight 1,995 ft
Landing over 50 ft, Landing Weight 480 ft
Wing Loading @ TCW 71.4 lbs/sq ft
Power Loading @ TCW 6.3 lbs/shp
Wing Loading @ MTOW 84.2 lbs/sq ft
Power Loading @ MTOW 7.5 lbs/shp
Positive Load Limit @ MTOW 7.5
SM-27 MACHETE

Performance & Specifications

MODEL
SM-27T

TYPE
Two Seat Tandem Close Air Support (CAS), COunter-INsurgency (COIN) and Lead-In Trainer (LIT) Aircraft

ACCOMMODATION
Flight Crew of Two Seated on a Martin Baker MKUS.16L Zero-Zero Ejection Seats

POWERPLANT
One (1) Pratt & Whitney Canada PW150 Derivative Turboprop derated to a maximum rating of 4,000 s/hp driving a 10ft diameter, Contra-Rotating 8/6 Blade Scimitar Propeller.

STRUCTURE
Cantilever three spar semi-monocoque titanium foam metal sandwich wing, canard and empennage with modular four element semi-monocoque titanium and aluminum foam metal sandwich fuselage.

ARMAMENT
One Ventral Centerline Mounted General Dynamics Four Barrel GAU-13/A 30mm Gatling Cannon with 600 rds;
Eight Underwing Stores Pylons with 14-in Suspension for a Maximum External Warload of 8,000 lbs.

DIMENSIONS WEIGHTS & CAPACITIES
Wingspan 53 ft 0 in Empty Weight 15,000 lbs
Length Overall 38 ft 6 in Maximum Internal Fuel (IF) 5,000 lbs
Height Overall 12 ft 11 in Max External Load/Warload 8,000 lbs
Wing Area 354 sq ft Max Useful Load 15,000 lbs
Wheelbase 16 ft 2 in Typical Combat Weight (TCW) 25,300 lbs
Wheeltrack 12 ft 1 in Max Take-Off Weight (MTOW) 30,000 lbs
PERFORMANCE
Max Level Speed @ SL 350 KTAS
Length Overall 38 ft 6 in
Max Level Speed @ FL150 407 KTAS
Max Cruise Speed @ FL150 366 KTAS
Max Cruise Speed @ FL300 339 KTAS
Typical Cruise Speed @ FL150 329 KTAS
Typical Cruise Speed @ FL250 307 KTAS
Typical Landing Stall Speed @ SL 166 KTAS
Typical Approach Speed @ SL 76 KTAS
Typical Approach Speed @ SL 84 KTAS
Typical Takeoff Speed @ SL 114 KTAS
Max Climb Rate @ SL 4,275 ft/min
Service Ceiling 45,000 ft
Max Cruise Range @ FL150-IF 2,089 nm
Max Cruise Range @ FL300-IF 2,534 nm
Typical Combat Radius @ FL150-IF 783 nm
Typical Combat Radius @ FL250-IF 870 nm
Ferry Range-External Tanks 3,803 nm
Endurance @ SL-Internal Fuel >13 Hrs
Takeoff over 50 ft, Takeoff Weight 1,995 ft
Landing over 50 ft, Landing Weight 480 ft
Wing Loading @ TCW 71.4 lbs/sq ft
Power Loading @ TCW 6.3 lbs/shp
Wing Loading @ MTOW 84.2 lbs/sq ft
Power Loading @ MTOW 7.5 lbs/shp
Positive Load Limit @ MTOW 7.5

Drawings

SM-27 MACHETE
SM27T-MACHETE-ORTHOGRAPHIC-1

SM-27S Turboprop Machete Ventral Three-View

SM27S-MACHETE-VENTRAL-ORTHOGRAPHIC-1

SM-27S Turboprop Machete Three-View With Ordnance

SM-27 MACHETE

SM-27S Turboprop Machete Ventral Three-View With Ordnance

SM27S-MACHETE-VENTRAL-ARMED-ORTHOGRAPHIC-1

SM-27T Turboprop Machete Three-View With Ordnance

SM27T-MACHETE-ARMED-ORTHOGRAPHIC

SM-27T Turboprop Machete Ventral Three-View With Ordnance

SM27T-MACHETE-ARMED-VENTRAL

SM-27S Turboprop Machete Isometric

SM27S-MACHETE-ARMED-ISOMETRIC

Cost

The SM-27 is now under development. Upon entering production, the Per Unit Flyaway Cost (Flyaway Cost) of SM-27S/T Machete aircraft will be dependent upon the specific model, model block configuration, customer selected weapon system sensor-avionics-instrumentation-electronic warfare-armament systems package, and all related support equipment specific to an individual aircraft, not including fixed or expendable external stores (external or drop tanks, ordnance, pods and pylons), spares or ground support equipment.

Based upon a Standard Weapon System Configuration (SWSC) developed for each member of the SM-27 Machete family in support of the marketing and export of aircraft to NATO allied air defense forces, a Rough Order of Magnitude (ROM) Per Unit Flyaway Cost range and associated Median Cost has been projected for each Machete model. Projected ROM Flyaway Costs for Block 10, Low Rate Initial Production (LRIP) SM-27S/T Machete aircraft of SWSC, in United States Dollars (USD), are as provided. All projected ROM costs herein provided are approximate estimations issued to assist potential procurement bodies for future force budgetary planning only. Projected ROM costs are not contractually binding:

SM-27 MODEL CONFIGURATION FLYAWAY COST*
SM-27S MACHETE Base: $15,000,000
Special: $18,000,000
Super: $20,000,000
Deluxe: $22,000,000
SM-27T MACHETE Base: $15,500,000
Special: $18,500,000
Super: $20,500,000
Deluxe: $22,500,000

As indicated, the Per Unit Flyaway Cost (Flyaway Cost) of SM-27S/T Turboprop Machete aircraft is between approximately $15,000,000 (fifteen million) and $23,000,000 (twenty-three million) United States Dollars (USD), depending upon specific model and configuration.

These ROM, approximate Flyaway Costs apply to one (1) basic Turboprop Machete platform (Stavatti Model 27 S or T) of Standard Weapon System Configuration (SWSC). In an effort to simplify the marketing and distribution of the Machete weapon system worldwide, Stavatti has developed the SWSC. The SM-27S/T SWSC represents a common SM-27S/T configuration which is readily suitable for mass production and expedient delivery to the customer. Stavatti customers may purchase SM-27S/T SWSC aircraft at a specified flyaway cost plus applicable duties and export/delivery expenses.

SM-27S/T SWSCs are specified within the SM-27S/T Configuration Control Statement (CCS) document as issued by Stavatti Aerospace for specific Machete models as appropriately configured for specific domestic and allied customers. Contact Stavatti or visit Machete Product Literature for a copy of an appropriate CCS. A portion of the avionics, displays, armament and related systems associated with the SM-27 SWSC are also indicated in the Machete Specifications page of this website. The following support documentation, options, equipment and material is also included with each SM-27S/T of SWSC:

U.S. Standard Airworthiness Certificate, Export Certificate of Airworthiness, Weight and Balance Data Sheets/Weight and Balance Plotter, Aircraft/Engine/Armament System Log Books, Abbreviated Checklist, Flight Manual, Pilot‘s Operating Manual, Avionics Wiring Diagrams, Hydromechanical Systems Manual, Maintenance Manual (Airframe), Illustrated Parts Catalog (Airframe), Wiring Diagram Manual (Airframe), Weight and Balance Manual, CAS Air Combat Manual, COIN Air Combat Manual, Special Combat Operations Manual, Advanced Training Instructional Manual (SM-27T), Component Maintenance Manual, Structural Repair Manual, System Control Code Programmers Manual, Illustrated Tool and Equipment Manual, Nondestructive Inspection Manual, Engine Maintenance Manuals, Engine Illustrated Parts Catalogs, Parts Warranty Listing, additional miscellaneous information concerning engine, airframe, avionics and armament support, Aircraft Tie-Down Kit (including tie-down anchors and cable, wheel chocks, control locks, pitot-static port covers, etc.), Aircraft Full Canopy Sunshade/Cover, Basic Aircraft Tool Kit, Aircraft Emergency Survival Kit, HGU-86/P pilot flight helmet and accompanying flight/anti-g suit of customer specified sizing (Note: SM-27T/JT aircraft include two helmets and anti-g suits), 24 hours of Stavatti provided SM-27 operational ground schooling/orientation for one flight officer, 24 hours of Stavatti provided SM-27 maintenance and service ground schooling/orientation for one maintenance officer, 5 hours of SM-27 orientation flying in a Stavatti owned and operated SM-27 for one flight officer, Custom Paint Scheme consisting of up to 10 base colors and up to 25 trim colors as well livery/noseart, 675 or 470 (model dependent) rounds of installed 30 mm ammunition for GAU-13/A cannon, Full Fuel consisting of 5,000 lbs of JP-8 installed in aircraft, additional equipment and a 2,000-Hour ‘Nose-to-Nozzle’ Manufacturer’s Warranty.

All publications, documents and manuals will be provided in both hardcopy bound print as well as CD-ROM and Aerofiche format. In addition to documentation supplied by Stavatti Military Aerospace, additional documentation may be provided detailing the operation/maintenance of specific aircraft systems by specific aircraft system manufacturers. Stavatti will provide Service Bulletins, Service Letters, Air Worthiness Directorates and manual revisions for the duration of aircraft operational service life.

The Flyaway Cost of the SM-27S/T does not include the cost of any spares, external stores/armament, or other logistical support that may be associated with a weapon system procurement contract. The additional costs associated with the provision of spares, external stores/armament, Contractor Logistical Support or any other indicative cost options, maybe provided by Stavatti. All Flyaway Cost data provided herein is not contractually binding and are conceptual in nature.

The noted Flyaway Costs only apply to the SM-27S/T of SWSC. The SM-27S/T SWSC does not represent aircraft configured to satisfy specific customer requirements. Stavatti desires to satisfy all customer needs and requirements. In so doing, the SM-27S/T will employ open avionics and systems architecture allowing the SM-27S/T platform to employ a wide variety of avionics, armament and sensor systems. Customers are invited to procure aircraft which employ customized systems configurations, as specially developed by Stavatti. The Flyaway Cost of SM-27SS/T aircraft of customized configuration will be dependent upon the systems specified and is determined only upon assessment of the specific configuration.

AVAILABILITY

The SM-27 Machete is currently under development by Stavatti Aerospace Ltd. Stavatti is now accepting orders for the SM-27 and all initial production aircraft will be produced in satisfaction of backlog orders. Low Rate Initial Production (LRIP), Initial Operational Capability (IOC) and Full Rate Production (FRP) dates will be published by Stavatti following prototype first flight. Stavatti reserves the right to adjust, modify, expedite, cancel or otherwise enhance the projected dates for SM-27S/T Machete series LRIP, IOC or FRP at our discretion. All program phase time-frame estimates are for the benefit of future force program budget planners and are non-contractually binding.

MACHETE MODEL PROGRAM PHASE TIME-FRAME*
SM-27S MACHETE LRIP: Contact Stavatti
IOC: Contact Stavatti
FRP: Contact Stavatti
SM-27T MACHETE LRIP: Contact Stavatti
IOC: Contact Stavatti
FRP: Contact Stavatti

Prior to entering Full Rate Production (FRP), the SM-27S/T must complete a comprehensive RDT&E program, followed by twelve (12) to twenty-four (24) months of Low Rate Initial Production (LRIP). The SM-27 RDT&E program will result in the fabrication of three (3) Machete Prototype Air Vehicles (PAVs) of each series model (SM-27S/T), which will undergo over 1,500 hours of flight testing. Conclusion of the flight test program will result in FAA FAR 25 type and production certification as well as applicable MIL SPEC qualification.

LRIP consists of a one to two year gradual ramp-up of production, focused upon the manufacture of ten (10) to twenty (20) Machete production aircraft. All aircraft produced during LRIP are considered Production Articles. The first two (2) to six (6) Machetes produced in LRIP will likely remain in possession of Stavatti to serve as company demonstrators. The remaining Machetes produced during LRIP will be delivered to satisfy customer orders. Due to security restrictions, Stavatti does not openly publish the current backlog for Machete orders. Stavatti will begin satisfying this backlog through LRIP.

Full-Rate Production will result in the production of between 50 and 100 SM-27 aircraft annually, with an anticipated SM-27 delivery lead time of 12 months. All SM-27 production availability schedules are subject to change.

PURCHASE

SM-27S/T Machete aircraft are marketed and sold directly by Stavatti Aerospace Ltd to the end user as a Direct Commercial Sale (DCS) with exception of specific systems which require a Foreign Military Sales (FMS) component including, but not limited to: IFF and COMSEC/TEMPEST related systems and equipment. Furthermore, all Global Positioning Systems (GPS) receivers incorporating a PPS (Y) Interface must be approved for export through the Joint GPS Program Office.

Stavatti reserves the right to market and sell the SM-27S/T through the U.S. FMS program for purposes of assisting customers who desire the procurement of major weapon systems with military credits or direct program/operational support from the U.S. DoD.

To simplify the procurement process, Stavatti prefers to structure SM-27S/T procurement contracts as Fixed Cost Contracts (FCC). Customers may elect to procure SM-27S/T SWSC aircraft or SM-27s configured for customized end user requirements. In the event customers wish to procure SM-27S/T SWSC aircraft, there is a distinct possibility that aircraft may be procured from existing Stavatti inventory, thereby significantly reducing delivery lead-time.

If customers desire an SM-27S/T of custom configuration, the procurement lead-time may increase from 6 to 12 months due to the lead-times associated with the procurement of specific aircraft systems including powerplant, avionics, displays and armament. It is for this reason that the Standard Lead Time for the procurement of SM-27S/T aircraft is estimated at 12 months from date of contract signing.

Stavatti does not employ a standard SM-27 series FMS procurement process. All SM-27 procurement performed under FMS must be coordinated on a case-by-case basis. Stavatti’s standard SM-27 DCS procurement process for all SM-27 aircraft is as follows:

1) Customer provides Stavatti with a Letter of Intent (LOI). An LOI is a statement indicating that the customer (client nation) intends to enter into a binding contract for the procurement of a specified number of SM-27 aircraft. The LOI must include information relating to the number, model and configuration which the customer wishes to procure, the address of the procurement body, a signature of a qualified purchasing representative of the procurement body and the address of the delivery destination of the SM-27 aircraft.

2) Stavatti will submit forms DSP-5 or DSP-73 or DSP-85 as appropriate to the State Department -Directorate of Defense Trade Controls (DDTC) to obtain the necessary export licenses associated with the SM-27 procurement by the specific customer/client nation. Export licenses are not required for domestic sales to the US DoD/government user agencies. Once an approved export license is received by Stavatti, the customer and Stavatti may proceed with contract draft and signing.

3) Customer and Stavatti draft and enter into/sign a SM-27 Machete Procurement Contract (PC). The PC will specify the precise configuration of the SM-27 aircraft to be procured including powerplant, avionics, instrumentation, escape systems, armament, APU, armor plating, sensors, EW suite, tires, paint scheme and livery, warranty, associated support equipment, etc. Delivery destination, anticipated delivery date and total contact value will be specified, as well as all other information necessary to produce and deliver the contracted SM-27 aircraft to the customer in their desired configuration. The Customer must ensure the PC is accompanied by a Contract Initiation Payment (CIP) valued at One Third (1/3 or 33.3%) of the Total Contract Value to be paid to Stavatti.

4) Stavatti completes the production of SM-27 Machete E aircraft to the “Green” or Un-Painted/Pre-Final Integration stage. Prior to “Painting” and completing final integration of aircraft armament, sensor, avionic and EW systems, the Customer is required to provide a Green Aircraft Payment (GAP) valued at One Third (1/3 or 33.3%) of the Total Contract Value to be paid to Stavatti. Once the GAP is received by Stavatti, “Green” aircraft enter the painting/ final integration phase.

5) Stavatti completes and delivers the SM-27S/T Machete aircraft as specified in the PC. Upon delivery (or upon completion in the event the Customer receives/takes possession of the completed aircraft directed at the factory) of the procured SM-27 aircraft to the customer, the balance of the total contract value, equal to the remaining One Third (1/3 or 33.3%) of the Total Contract Value, must be paid to Stavatti.

Stavatti will receive payment for domestic SM-27 Machete sales by wire transfer of funds, certified check, United States Dollars/Federal Reserve Notes (USD/FeRNs), gold or alternate precious Platinum Group Metal (PGM). Stavatti will receive payment for foreign export SM-27 Machete sales by wire transfer of funds, United States Dollars/Federal Reserve Notes (USD/FeRNs), gold or alternate precious Platinum Group Metal (PGM).

EXPORT

In compliance with the Arms Export Controls Act (AECA) and the International Traffic in Arms Regulations (ITAR: CFR 120-130), Stavatti restricts the marketing and sale of the SM-27 Machete air weapon system to qualified U.S. and NATO allied air defense arms. In support of current U.S. Arms Embargoes as issued by the U.S. State Department, Stavatti will not export SM-27 Machete series aircraft to any of the following nations:

Belarus, Burma, Central African Republic, People’s Republic of China, Cuba, Democratic Republic of the Congo, Eritrea, Haiti, Iran, Kyrgystan, Lebanon, Libya, North Korea, Somalia, Sudan, Syria, Venezuela, Zimbabwe

Stavatti recognizes that the status of State Department Arms Embargoes is in constant flux with nations being added or removed from the Arms Embargo List from time to time. Stavatti therefore encourages parties and potential customers interested in procuring SM-27 Machete series aircraft to visit the State Department-Directorate of Defense Trade Controls (DDTC) Website at: https://www.pmdtc.org/ for a current State Department Embargo Reference List.

Prior to marketing the SM-27 Machete series to any potential customer nation, Stavatti contacts DDTC to receive “Prior Approval To Market.” Once prior approval is received, Stavatti initiates a comprehensive marketing program which consists of information and support material which is unavailable to the Public Domain. Prior to issuance of a production contract or purchase order, Stavatti submits an export license application (DSP-5, DSP-61, DSP-73, etc.) for the purpose of obtaining an export license in support of the anticipated contract or purchase order. The export license application must be accompanied by attachments, some of which must be completed in-whole or in-part by the potential customer/procurement body. Furthermore, a Letter of Intent (LOI) or similar official document including a Procurement Contract must be issued by the intended procurement body to serve as an attachment to accompany the export license application for review by the State Department-DDTC in support of the SM-27 Machete series export licensing process.

Stavatti is a State Department-DDTC registered manufacturer and exporter or U.S. Munitions List (USML) Category I, II, III, IV, VIII (Aircraft), X as well as additional items. Copies of expired, prior year State Department-DDTC Registration Letters are available for review on the Stavati Licenses webpage. Current Registration Letters received from DDTC are not posted online for security purposes.

WARRANTY

Stavatti will assign each SM-27 Machete aircraft with a 2,000 hour, Nose-to-Nozzle, Manufacturer’s Limited Warranty. Stavatti expressly warrants each new SM-27 Machete aircraft (exclusive of powerplant and powerplant accessories as supplied by P&WC which are covered under P&WC warranties), including factory installed avionics, armament, electronic countermeasures and additional factory installed equipment, both standard to the type and optional, to be free from defects in material and workmanship under normal use and service for a period of 2,000 flight hours beginning upon delivery of the SM-27 aircraft to the initial end user.

Stavatti‘s obligation under this warranty will be limited to repairing or replacing, at its sole option, any component or components which within the applicable warranty period are identified by the owner/operator. The repair or replacement of defective components under this warranty will be made by or through any Stavatti or Stavatti approved SM-27 Machete service facility without assessment of fee or cost to the warranty holder for components or labor for removal, installation and/or repair. All import duties, sales taxes and use taxes, if any, on such warranty repairs or replacement components are the sole responsibility of the warranty recipient.

The warranty will apply to any SM-27 aircraft, avionics and fixed aircraft equipment as integrated by Stavatti under production contract by the end user which has been flown, maintained and operated in accordance with Stavatti and other applicable manuals, bulletins, airworthiness directives and other written instructions. The warranty, however, will not apply to SM-27 aircraft, avionics and fixed aircraft equipment as integrated by Stavatti under production contract by the end user which have been subject to misuse, abuse, negligence, accident or battle damage; or which have been altered other than by Stavatti, or contrary to applicable manuals, bulletins, and other written instructions provided by Stavatti, in any way that, in the sole judgement of Stavatti, adversely affects their performance, stability or reliability; or to normal maintenance services (such as powerplant adjustments, cleaning, control rigging, brake and other mechanical adjustments and maintenance inspections); or to the replacement of service items (such as brake linings, filters); or to normal deterioration of appurtenances (such as paint and livery) due to wear.

Each SM-27 Machete procurement contract will incorporate a complete description of all aspects associated with the 2,000 hour `Nose-to-Nozzle’ manufacturers limited warranty. Customers will be able to extend their warranties in 500 hour blocks beyond 2,000 hours for a nominal fee.

LEASING

SM-27 Machete aircraft will be made available for lease with customer approved credit directly from Stavatti. Stavatti lease programs are subject to U.S. State Department-Office of Defense Trade Controls Approval and may be conducted as DCS or FMS lease programs. FMS lease programs are coordinated through an appropriate U.S. DoD user agency and will generally consist of SM-27 aircraft owned by the U.S. DoD which are then leased, through a DoD negotiated lease agreement, to the end user. FMS lease programs are outside Stavatti’s sphere of influence and parties interested in leasing SM-27 aircraft through FMS are urged to contact the U.S. DoD.

Stavatti DCS leases will involve the lease of Stavatti owned aircraft to the end user. DCS lease terms and arrangements must be negotiated on a case-by-case basis and are dependent upon the type and number of SM-27 aircraft leased and the qualifications of the nation/air arm leasing the SM-27 aircraft. Typically SM-27S/T Machete SWSC aircraft will be available for 36, 60 and 120 month leases.

All Stavatti lease customers are subject to pre approval requirements. Additional requirements will also apply to qualify for the SM-27 Machete lease program. All lease customers will be required to maintain current Hull and Liability insurance from a qualified aerospace insurance provider throughout the duration of the lease. All leased SM-27 aircraft must be operated by a qualified, SM-27 Type Certified pilot with a current U.S. First Class Medical or equivalent medical certification and no less than 1,500 hours high performance aircraft experience. In the event lease customers are unable to provide a qualified pilot, Stavatti will provide contract pilot services at a negotiated contract cost. A Stavatti lease maintenance agreement will be implemented in conjunction with the standard 2,000 hour ‘Nose-to-Nozzle’ Limited Manufacturer’s Warranty. The lease customer will be responsible for the costs associated with maintenance and repairs on the SM-27 aircraft hull and systems resulting from the combat environment during the time of lease. In the event an SM-27 aircraft is destroyed and/or damaged to such an extent that the aircraft is considered a total loss, during either peace or war, the lease customer will responsible for the remainder of the lease owed due, plus the purchase price of the aircraft at lease end.

Additional requirements, limitations and restrictions will apply. Contact Stavatti for more information regarding the leasing of SM-27 Machete aircraft.

LICENSED PRODUCTION

SM-27 Machete aircraft will be available for licensed production in qualified facilities worldwide. Licensing of SM-27 Machete production is subject to U.S. State Department-Directorate of Defense Trade Controls Approval. Stavatti is responsible for coordinating and negotiating all SM-27 Machete licensing worldwide.

Stavatti will permit the production licensing of all SM-27 series models in its entirety, in kit form or, alternatively, industry teaming for the production of SM-27 aircraft in-part or in component form. Licensing arrangements must be considered on a case-by-case basis. Generally, Stavatti assumes license production involves the production of entire SM-27 aircraft from an indigenous producer within a customer nation. To produce the SM-27 under license a customer must first exhibit possession of a qualified, appropriate aircraft production facility capable of producing the SM-27 aircraft to the degree desired (i.e. in whole or in part) as well as qualified engineers and assembly personnel to support the production process. Customers must then pay an initial licensing fee, as well as annual licensing maintenance fees and a royalty on aircraft produced/sold.

Qualified Customers who produce the SM-27 under license will receive significant technical and production support from Stavatti, including access to both Stavatti’s U.S. domestic SM-27 production facility as well as complete familiarization with SM-27 prototypes, production vehicles and demonstrators.

In the event a nation desires to produce the SM-27 under license, but lacks the facilities and equipment to do so, Stavatti can provide total support and assistance with regard to the organization and creation of a suitable production facility.

OFFSET

To address the issue of global fiscal responsibility with regard to necessary defense spending, Stavatti offers numerous Offset opportunities associated with SM-27 procurement.

The standard cost offset associated with SM-27 procurement is the licensed production of SM-27 subsystems and components in the customer nation. Stavatti maintains industry partners worldwide and desires to expand major airframe component/assembly production into your region of the world.

Barter is an offset opportunity which Stavatti will willingly consider. Oil, minerals, and additional goods may serve as suitable barter toward the procurement of SM-27 aircraft. Additionally, Stavatti will take trade-ins from existing nation fighter/trainer/ transport aircraft fleets, serving to reduce overall aircraft procurement costs.